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A fundamental question in evolutionary biology is the relative importance

of selection and genetic architecture in determining evolutionary rates.

Adaptive evolution can be described by the multivariate breeders’ equation

(D�z ¼ Gb), which predicts evolutionary change for a suite of phenotypic

traits (D�z) as a product of directional selection acting on them (b) and the

genetic variance–covariance matrix for those traits (G). Despite being

empirically challenging to estimate, there are enough published estimates

of G and b to allow for synthesis of general patterns across species. We

use published estimates to test the hypotheses that there are systematic

differences in the rate of evolution among trait types, and that these differ-

ences are, in part, due to genetic architecture. We find some evidence that

sexually selected traits exhibit faster rates of evolution compared with life-

history or morphological traits. This difference does not appear to be related

to stronger selection on sexually selected traits. Using numerous proposed

approaches to quantifying the shape, size and structure of G, we examine

how these parameters relate to one another, and how they vary among taxo-

nomic and trait groupings. Despite considerable variation, they do not

explain the observed differences in evolutionary rates.
1. Introduction
Predicting the rate and direction of phenotypic evolution remains a fundamental

challenge in evolutionary biology [1–4]. Empirical studies have demonstrated

that most traits are heritable [5–8] and can respond to selection—a prediction borne

out by an abundance of short- [9–11] and long-term [9,12–14] artificial selection

experiments targeting single traits. However, in most biological systems, the targets

of selection are suites of traits. Furthermore, different traits are tied together by gen-

etic associations (typically quantified as covariances), and consequently selection

on one trait can lead to evolutionary changes in other traits [7,8,11,15–21].

Indeed, genetic covariation between traits appears to be ubiquitous and has the

potential to shape the evolution of associated traits [7,10,17,18,20,22,23]. Therefore,

to improve our understanding of phenotypic evolution, it is necessary to invoke a

multivariate perspective [5,17–19,24].

The evolutionary response of a suite of traits can be predicted by the multi-

variate breeder’s equation D�z ¼ Gb, where D�z is the vector of responses in

phenotypic means for the suite of traits, G is the additive genetic variance–

covariance matrix and b is the vector of linear (directional) selection gradients

[5–8]. The importance of G to phenotypic evolution can be illustrated using the

concept of ‘genetic degrees of freedom’ [9,11,15]. Whenever there is genetic

covariance between them, the number of trait ‘combinations’ in G that can

respond to selection can be considerably smaller than the actual number of

measured traits. This can be true even when each trait in G is heritable and

all pairwise genetic correlations between them are less than one [1–3,9,11,25].

This reduced dimensionality constrains the population to evolve in a genetic
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Figure 1. The effect of g max on the response to selection where traits geneti-
cally covary. The axes represent the breeding values for two hypothetical traits.
The population mean is at the solid point, and the surrounding ellipse is the
95% confidence region for the distribution of trait values about the mean.
That these traits covary is evident as the ellipse is at an angle relative to the
trait axes. The axes of the ellipse represent the two orthogonal directions (eigen-
vectors) of variance present—there is more standing genetic variance along the
major axis (g max) than the minor axis. The grey lines are ‘contours’ on a fitness
landscape, with an adaptive peak at ‘S’. Rather than evolving directly toward the
peak (dashed arrow), the influence of g max may cause the population to evolve
along an indirect course (bold arrow). In some cases, this may even result in the
population evolving toward an alternate fitness peak (e.g. at ‘A’, modified con-
tours not shown) in line with g max, even though it is more distant from the
current mean.
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space with fewer dimensions than the number of traits (and

trait combinations) potentially under selection. A matrix

whose variance is concentrated in one or a few dimensions

can exhibit ‘lines of least evolutionary resistance’ (LLER);

directions in which the multivariate evolutionary response

can proceed more rapidly than in others [15]. The presence

of these LLERs can have a major influence in biasing the

direction of evolutionary trajectories (figure 1; [7,11,15–20]),

making the G matrix more informative about the short-

term capacity of a population to respond to selection

(i.e. its evolvability) than the heritabilities of individual

traits [7,10,17,18,20,22,23].

A variety of measures have been proposed as proxies

for the evolutionary potential of a population. Most current

approaches represent a function of the components of the

multivariate breeder’s equation: G, b and D�z [5,17–19,21,24].

Unfortunately, few studies simultaneously estimate more than

one of these components. The notable exceptions suggest that

the structure of G plays an important role in directing phenoty-

pic evolution [26–29]. Even fewer studies provide direct

estimates of observed rates of evolution [30,31]. However,

many individual estimates of selection and evolutionary rates

exist in the literature, and evolutionary research has benefitted

from reviews that synthesize these parameters [30–38]. There

is considerable variation in the strength of selection across

different trait types and fitness measures [33,34,38] as well as

over time (but see references [36,39,40]). On average, linear

selection appears stronger on morphological than life-history

traits, and both linear and quadratic selection is stronger
when acting on mating success and fecundity compared with

viability [1–4,33,38]. However, inferences from such studies

are subject to methodological debate [5–8,35] and potentially

publication biases [9–11,40]. In particular, there has been dis-

agreement about trait scaling, and how it influences estimates

and broader evolutionary conclusions [19,22,41].

Although they have not received the same attention as selec-

tion gradients, reviews based on published genetic parameters

show clear differences across trait types. Morphological traits

generally have higher heritabilities than life-history traits,

with physiological and behavioural traits intermediate between

these extremes ([9,12–14,32], but see [6–8,11,15–21]). Sexual

traits have also been shown to have higher additive genetic

variances compared with non-sexually selected traits

[7,10,17,18,20,22,23,42], although this finding is based on few

studies. As discussed above, trait scaling has been shown to

alter the observed patterns [19,22,41].

There have been even fewer attempts at synthesis from a

multivariate perspective. Notably, Kirkpatrick [20], Kirkpatrick &

Lofsvold [9], Agrawal & Stinchcombe [23] and Schluter [11,15]

collected small samples of G matrices from the literature and

found that much of the available variance was concentrated in

the first few dimensions. This suggests that few genetic degrees

of freedom may be the norm, but we know of no systematic

review that reveals how general this pattern is or whether it differs

across taxa or trait types. Likewise, although reviews on the rate of

contemporary microevolution suggest that rapid evolution

should be viewed as the norm rather than the exception

[15,30,31], a comprehensive review of evolutionary rates across

different taxa and trait types does not currently exist.

We compiled a database of reported genetic parameters

from the literature to ask whether different types of traits

evolve at different rates, and whether such differences correlate

with differences in selection, in patterns of genetic (co)variation

or both. We performed a quantitative literature review, to

examine whether observed rates of evolutionary response

differ across trait types (morphological, life-history and

sexual) in plants and animals. We relate these observed rates

of evolutionary response to estimates of linear and quadratic

selection, as well as measures that capture the size, shape

and structure of G [7,11,15–20], to determine whether there

is an association across trait types and taxa. We find some

evidence that sexual traits evolve faster than other traits in ani-

mals but not in plants, where life-history traits evolve fastest.

These increased rates of evolution do not appear to be attribu-

table to the same cause however. In plants, we find that

selection also appears to be strongest on life-history traits,

whereas, in animals, selection on sexually selected traits

appears to be stronger than on life-history but indistinguish-

able from that on morphology. We then examined how the

measures used to capture the size, shape and structure of G

vary among trait types and between taxa, but find that this

incompletely explains the observed pattern of evolutionary

rates. In addition, we compare the various measures based

upon G, and show that for these empirically observed matrices,

many strongly covary.
2. Methods
All data and scripts containing our analyses can be downloaded

either from DRYAD (doi:10.5061/dryad.g4t8c) or github

(https://github.com/DworkinLab/Pitchers_PTRS2014).

http://dx.doi.org/10.5061/dryad.g4t8c
https://github.com/DworkinLab/Pitchers_PTRS2014
https://github.com/DworkinLab/Pitchers_PTRS2014
http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130252

3

 on January 31, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
(a) Compilation of database
We compiled our datasets by searching for publications on the

ISI Web of Science database between March 2006 and August

2012. We then refined this preliminary list of references on the

basis of their title, abstract and keywords and attempted to

obtain the full text for all papers included in the dataset.

Rates of evolution have been measured using a number of

different units, most prominently darwins [7,10,17,18,20,22,

23,43,44] and haldanes [5,17–19,21,24,43,45]. Measurements in

darwins have proved most appropriate for researchers studying

evolution on macro-evolutionary scales (e.g. palaeontologists),

because they express the rate of evolution per million years

(although there are known methodological issues with making

comparisons [44,46]). However, for our purposes, rates expressed

in haldanes are the appropriate unit as they measure change per

generation and are used to measure evolution on a micro-

evolutionary scale—the scale over which G may be important.

We therefore compiled a database of evolutionary rate measured

in haldanes only. We performed searches for the terms ‘rate of

evolution’, ‘rate of adaptation’, ‘haldanes’, ‘response to selection’

and ‘experimental evolution’. This process was aided consider-

ably using the measurements from the studies previously

compiled by Hendry et al. [26–29,47]. Where studies reported

the results of experimental evolution without explicitly reporting

a rate of response, we contacted the authors to ask for the data

needed (e.g. generation time) to calculate a rate in haldanes,

standardizing traits as necessary. Previous work has shown

that even with log transformation of ratio scale data (where

means and variances might covary), this had little influence on

overall estimates for haldanes [31].

For the database of selection gradients, we began with the

database compiled by Kingsolver et al. [30,31,33,37], and sup-

plemented this with additional measures from work published

after 2001 by searching for the terms ‘natural selection’, ‘sexual

selection’, ‘selection gradient’ or ‘selection differential’. Unlike

Kingsolver et al. [30–38], we included both field and laboratory

studies. While there has been discussion about the effects of

trait scaling (mean versus standard deviation) on estimates of

selection [19,35], we have only included estimates standardized

using the approach as advocated by Lande & Arnold [21], as

this has been most broadly used.

For the G matrix dataset, we searched the Web of Science

database using the terms ‘G matrix’ (or ‘G-matrix’), ‘covariance

matrix’ (or ‘co-variance matrix’ or ‘(co)variance matrix’) or

‘quantitative genetics’. We recorded G matrices expressed both

as genetic (co)variances (provided we were able to mean-

standardize them, following [19]) and as genetic correlations

and narrow sense heritabilities. Where possible (i.e. where

estimates of phenotypic variance had been presented along-

side genetic correlations and heritabilities), we back-calculated

the genetic variances and covariances as: VA ¼ h2VP and

cov(x,y) ¼ rG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VA(x)VA(y)

p
, where VA and VP are the additive gen-

etic and phenotypic variances, h2 is the narrow sense heritability

and rG is the genetic correlation between traits x and y. In cases

where matrices were incomplete, we contacted the author(s) to

request the missing estimates. We thus have two G datasets:

correlation matrices and covariance matrices. Because we found

correlations to be reported more often than covariances, the cor-

relation dataset is a superset of matrices that includes those in the

covariance dataset. Trait scaling for the covariance matrices is

discussed below. In a number of cases, matrices had component

traits that had been measured in difficult-to-compare units (e.g.

both a length and a volume), or where traits were expressed as

residuals (e.g. from regression against size). In these cases, we

excluded these from the reported analysis, but inclusion had

little effect on the results. A number of matrices were also

found to include cells with correlations more than one, and in

these cases, we excluded the offending matrix.
(b) Defining trait categories and measures
Because we wished to make comparisons across different ‘trait

types’ (sensu [33,34,38]), it was necessary to assign our measure-

ments from the literature into categories. We chose three trait

categories: life history, morphological and sexually selected

traits. It is relatively straightforward to separate life history

from morphological traits and the majority of measurements in

the literature fall into these two categories. In animals, we

defined sexual traits as those where we were able to find at

least one study demonstrating the trait was subjected to female

preference or used in male–male competition. For plants, we

defined floral morphology as sexually selected [36,39,40,48].

Thus, for both plants and animals, our sexually selected and

morphology categories are not mutually exclusive. In an attempt

to reduce error in our study, traits that did not fit clearly into one

of our three categories were excluded from our dataset. For G

matrices whose component traits did not all fit the same cat-

egory, we split the matrix to produce submatrices relating to

traits only within a single category. Where matrices contained

a single trait whose category differed from all others in the

matrix we removed that trait from the matrix.

When making comparisons across our trait categories, we

acknowledge that our classifications may not be directly equival-

ent in plants and animals. We therefore included a ‘taxon’

category in our statistical models. The list of individual measures

of evolutionary rate was treated as a single response variable, as

were the standardized selection gradients.

In our analysis of the G data, we wished to capture those

attributes of G that might be expected to influence the rate of

evolutionary change. Matrices vary principally in terms of size

and structure. While numerous studies suggest that the align-

ment of axes of G with b is likely to be important, the nature

of the data we were able to compile does not allow us to quantify

alignment. Instead (as outlined below), we used a number of

scalar measures derived from G, meant to capture aspects of

the size and structure as a means to express evolutionary poten-

tial. All of the measures we used are summarized in table 1. One

general concern is that not all of the measures we used explicitly

accounted for the number of traits included in the matrix (i.e. nD).

While, in general, the number of traits seemed to have a small

influence on these measures (figures 4 and 5), we also took sev-

eral steps to account for these effects, such as including number

of traits as a linear covariate in the models (below) and also by

examining the effects of scaling nD by either trait number or its

square (‘effective subspace’, as suggested by one of the manu-

script referees). In none of these cases did it substantially alter

the results. While we use the name ‘effective dimensionality’

for nD, as proposed by Kirkpatrick [20], this measure actually

captures aspects of matrix eccentricity, not dimensionality.

For the dataset of G as mean-standardized covariance

matrices, we used the three G-structure measures suggested by

Kirkpatrick [20]: ‘total genetic variance’ (tgv), ‘maximum evolva-

bility’ (emax) and ‘effective number of dimensions’ (nD) and also

Hansen & Houle’s [19] ‘average evolvability’ (e). For the dataset

of correlation matrices, we calculated Pavlicev et al.’s [49] eigen-

value variance (var(l)) and relative eigenvalue variance

(varrel(l)) and also Agrawal & Stinchcombe’s [23] eigenvalue

evenness (El). Both sets of G matrix measures are defined in

table 1.

While we present the results from analyses of both the

(co)variance and correlation matrix datasets, it is important to

note that results are not directly comparable between them,

because it is well known that different methods of scaling

(i.e. mean-standardizing (co)variance matrices versus effectively

variance-standardized correlation matrices) produce fundamen-

tally different results for genetic attributes [6,19,35]. Furthermore,

though the correlation matrix dataset is larger, we note that the

covariance—not correlation—matrix is the current standard

http://rstb.royalsocietypublishing.org/


Table 1. G-matrix measures used in this study. Eigenvalue variance, relative eigenvalue variance and eigenvalue evenness are calculated from correlation
matrices, whereas the other four metrics are calculated from covariance matrices. nD does not measure dimensionality per se, but eccentricity.

measure cov/cor references equation no. formula

effective number of

dimensionsa (nD)

cov [20] no. 2 ( p. 273) nD ¼
Pn

i¼1 li /l1

maximum evolvability (emax) cov [20] no. 3 ( p. 274) emax ¼
ffiffiffiffiffi
l1
p

total genetic variance (vT) cov [20] no. 4 ( p. 274) vT ¼
Pn

i¼1 li

average evolvability (ē) cov [19] no. 4 ( p. 1206) �e ¼
P

i li
�

n

eigenvalue variance (var(l)) cor [49] n.a. ( p. 158) var(l) ¼
Pn

i¼1 (li � 1)2�
n

relative eigenvalue variance (varrel(l)) cor [49] n.a. ( p. 159) varrel(l) ¼ var(l)=n� 1

eigenvalue evenness (El) cor [23] no. 3.2 ( p. 1187) El ¼ �
Pn

i¼1

~li ln (~li )
ln (n)

, where ~li ¼ jlij=
Pn

j¼1 jljj

aIn all formulae l are eigenvalues and n is the number of traits in the matrix.

Table 2. The main effects included in the final models for each analysis. (Effects of ‘trait type’ refer to life history, morphology or sexual and ‘taxa’ to plant or
animal. ‘Study type’ refers to field observation or experimental evolution. Random effects of ‘study’ and ‘species’ refer to models where an intercept was fitted
to each species and study, and the random effect of ‘trait type:species’ indicates where both a species-level intercept and a species-level trait type effect
were fitted.) Full sets of models can be found in the scripts and data on Dryad.

measure fixed effects random effects

rate (animals) trait type þ study type study þ trait type:species

rate ( plants) trait type species

jbj trait type þ taxon þ trait type � taxon study þ species

(G) nD trait type þ taxon þ trait no. study

(G) emax trait type þ taxon þ trait no. study þ trait type:species

(G) tgv trait type þ taxon þ trait no. study þ trait type:species

(G) ē trait type þ taxon þ trait no. study þ trait type:species

(G) var(l) trait type þ taxon þ trait no. study

(G) varrel(l) trait type þ taxon þ trait no. study

(G) El trait type þ taxon þ trait no. study
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expression of G used for response to selection [21], and rates calcu-

lated from correlation matrices would also not be directly

comparable to those calculated from covariance matrices.

(c) Statistical analyses
Analyses were performed using R (v. 2.13.0; [50]); we fit general-

ized linear-mixed-effect models using the MCMCglmm package

(v. 2.15; [51]). A large proportion of studies reporting selection

gradients also reported standard errors or confidence intervals

(from which standard errors can be calculated). As noted by

Kingsolver et al. [38], this allows for the application of formal

meta-analyses, and we followed their lead in modelling selection

data with a meta-analysis, including random effects to account

for study- and species-level autocorrelation. We analysed esti-

mates of standardized selection gradients (b) expressed as

absolute values.

We found that standard errors or confidence intervals were

reported much less frequently among studies of G or rates of

evolution, and so we were unable to account uncertainty in the

estimates of G in these analyses as we had for selection,
though the model structure we used was otherwise similar.

We fit a set of models, and then evaluated model fit by com-

paring deviance information criterion (DIC) values [52], and

confirmed our selections by refitting the model set using reduced

maximum-likelihood (lme4 package [53]) and comparing fits

using Akaike and Bayesian information criterion scores (AIC/

BIC) and likelihood ratio tests using a parametric bootstrap.

The selected models for each dataset are described in table 2,

and full model sets are available with the data and scripts on

Dryad and github. Because we modelled the magnitude (absol-

ute value) of our response variables, we used the folded

normal distribution [38]. We therefore extracted the posterior

distributions of solutions, took the mean and standard deviation

from these distributions and applied these to the folded normal

distribution. We then report the mean and credible intervals from

these corrected distributions [38].

In total, we used 2571 estimates of the rate of evolutionary

response (measured in haldanes); there were comparatively few

estimates for plants, with no estimates available on the observed

rate of evolution for sexually selected (floral) traits. This imbal-

ance caused our estimates to be unstable, so we modelled plant

http://rstb.royalsocietypublishing.org/


Table 3. Summary statistics for estimates of the rate of evolutionary response, linear and quadratic selection gradients and measures capturing the size, shape
and structure of G. Statistics are reported by taxa and trait type, together with overall estimates across trait types and taxa. For each combination of taxa and
trait type, the summary statistics for each measure are provided in the following order: posterior mean, posterior mode, lower and upper 95% credible intervals
(in parentheses) and sample size (in italics). LH, life history; M, morphology; SS, sexually selected.

measure

animals
overall

plants

LH M SS all traits LH M SS

rate (haldanes) 0.12 0.13 0.18 0.13 0.3 0.15 —

0.122 0.12 0.193 0.101 0.332 0.181 —

(0.02,0.22) (0.09,0.17) (0.10,0.26) (0.08,0.17) (0.18,0.42) (0.05,0.25) —

781 7 1667 2571 26 90 —

jbj 0.09 0.22 0.19 0.21 0.31 0.22 0.16

0.157 0.215 0.167 0.242 0.334 0.344 0.167

(0.00,0.19) (0.16,0.28) (0.11,0.27) (0.17,0.26) (0.22,0.41) (0.09,0.36) (0.00,0.37)

65 342 150 776 156 44 18

(G) nD 1.13 1.20 1.31 1.53 1.23 1.29 1.39

1.40 1.19 2.06 1.50 1.28 0.98 1.81

(0.76,1.5) (0.82,1.54) (0.85,1.82) (1.39,1.67) (0.77,1.65) (0.86,1.71) (0.99,1.81)

(G) emax 0.43 1.25 0.78 0.61 0.59 0.91 0.53

0.26 0.01 0.86 0.47 0.89 0.57 0.11

(0,1.04) (0,2.83) (0,1.88) (0.26,0.97) (0,1.39) (0,2.22) (0,1.28)

(G) tgv 8.62 25.41 14.32 3.14 9.38 24.09 11.04

17.16 23.57 21.19 7.67 17.37 39.68 10.85

(0.01,18.11) (0.3,52.47) (0,30.89) (0,7.57) (0.01,19.64) (0.01,50.48) (0.01,22.86)

(G) ē 1.17 3.69 1.95 0.48 1.29 3.40 1.47

0.55 1.74 1.29 0.25 0.80 0.67 1.62

(0,2.94) (0.01,8.55) (0,4.75) (0,1.15) (0,3.2) (0,7.83) (0,3.62)

n (cov) 14 38 10 81 1 3 15

(G) var(l) 0.43 0.60 0.80 1.40 0.63 0.49 0.46

0.39 0.79 1.19 1.11 0.99 0.25 0.59

(0,1.04) (0,1.32) (0,1.68) (0.92,1.86) (0,1.41) (0,1.17) (0,1.14)

(G) varrel(l) 0.36 0.43 0.50 0.32 0.16 0.23 0.29

0.45 0.46 0.49 0.35 0.07 0.24 0.13

(0.15,0.56) (0.22,0.63) (0.25,0.75) (0.23,0.41) (0,0.33) (0,0.42) (0.06,0.53)

(G) El 0.76 0.70 0.67 0.73 0.86 0.79 0.77

0.78 0.77 0.69 0.76 0.80 0.81 0.81

(0.67,0.84) (0.61,0.77) (0.57,0.77) (0.70,0.77) (0.77,0.94) (0.71,0.87) (0.68,0.86)

n (cor) 42 82 27 221 14 26 30
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and animal rates separately. We had 776 estimates of b, but G

is reported less frequently in the literature (table 3) and our

sample size of G measures was 81 (co)variance matrices and

221 correlation matrices.
3. Results
(a) Observed rates of evolution differ among trait types

and between plants and animals
The overall posterior mean for evolutionary rate was 0.13 hal-

danes, with a 95% credible interval from 0.08 to 0.17. Credible
intervals for estimates in plants are quite wide (figure 2), most

likely due to the comparatively low number of studies in these

categories. However, there is a clear trend for faster rates in

life-history traits, with the life-history estimate being approxi-

mately 2.0 times as large (95% credible interval 0.7–4.8 � (the

ratio calculated from MCMC iterations for both estimates)) as

that for morphology, with only modest overlap of the 95% CIs

for the two trait types (table 3). In animals, life history and mor-

phology have similar estimates, but the posterior mean estimate

for sexually selected traits is somewhat higher—1.5 times that

for morphology (95% CI 0.5–6.9 times), and 1.5 times that for

life history (95% CI 0.8–2.3 times). Furthermore, the 95% CIs

for morphology do not include the estimate for sexually selected
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traits, though those for life history do. Despite this, model sup-

port from various measures (AIC, BIC and DIC) is inconsistent

about the overall support of trait types for the animal data

improving model fit. Overall, these results suggest similar

rates of evolution for morphology in both plants and animals,

with higher rates for life-history traits in plants and possibly

for sexually selected traits in animals.

(b) Standardized selection gradients show different
patterns between plants and animals

The overall posterior mean for absolute linear selection gradi-

ents was 0.21 (95% CI ¼ 0.17–0.26), which was somewhat

higher than the estimate reported by Kingsolver et al. [38]

(0.14, 95% CI ¼ 0.13–0.16), most likely due to our inclusion

of laboratory studies. The credible intervals from our full

model are again wider for plants, likely reflecting smaller

sample size (table 3). For both plants and animals, there is

little difference between the estimates for morphological

and sexually selected traits. In plants, the model suggests

that selection is stronger on life-history traits, whose estimate

is 40% larger than that for morphology and approximately

twice that for sexually selected traits. By contrast, in animals,

selection appears to be weaker for life history; the estimate for

selection on life-history traits is 0.43 times (95% CI 0.11–0.97)

that for morphology, and 0.49 times (95% CI 0.17–0.80) that

for sexually selected traits (figure 3).

(c) The marginal utility of multiple measures
The magnitude, shape and alignment of the G matrix all have

the potential to influence the rate of evolution, but with the

data available we are able to use measures intended to quantify

only the first two of these properties. Of the measures (table 1),
we report tgv, emax and ē can be thought of as measures of mag-

nitude, whereas nD, var(l), varrel(l) and El are intended to

quantify the departure of the matrix from symmetricality

(how dissimilar variances are along the multiple axes of G).

It is immediately obvious that the magnitude measures are

doing a good job of quantifying the same property of each

matrix (table 1 and figures 4 and 5), because tgv, emax and ē
are all intercorrelated (r . 0.96 in all cases). Given that these

measures of magnitude are also strongly correlated (r . 0.93

in all cases) with the magnitude of gmax (i.e. the principal eigen-

value of G), it is perhaps unsurprising in retrospect that they are

only poorly predicted by the number of traits measured, with

which they are correlated only at r ¼ 0.15–0.19.

With respect to the measures of matrix eccentricity, the first

thing we note is that var(l) and varrel(l) are strongly correlated

with each other (r ¼ 0.87), and negatively correlated with El

(r ¼ 20.32 and 20.55, respectively). Although El was defined

as a measure of correlation matrices [23], when we applied

the evenness formula to our dataset of covariance matrices,

we find that the resulting measure is strongly correlated with

Kirkpatrick’s [20] nD (r ¼ 0.82).
(d) The structure of G
We performed separate analyses and model selection pro-

cedures for each of our measures describing the structure

of G. Our models comparing covariance matrices revealed

very similar patterns of estimates for emax, tgv and ē. Further-

more, the pattern of estimates among trait types was

consistent between plants and animals (figure 6). In all cases,

the estimates for life-history and sexually selected traits were

similar and those for morphology were higher, but with

much overlap in credible intervals our confidence in these

differences is low. Our results for nD also show consistent pat-

terns of estimates between plants and animals, with the

estimates showing a shallow increasing trend from life-history

to morphology to sexually selected traits (figure 6d), but once
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again, there is wide overlap among credible intervals, indicat-

ing low confidence in this trend. While this is for the inclusion

of trait number as a linear covariate, similar results were

obtained when nD was scaled directly by trait number (elec-

tronic supplementary material, figure S1).

The results of our analyses of G matrices expressed as cor-

relations were more diverse. The pattern of estimates for

varrel(l) showed a trend for values to increase from life-history

to morphology to sexually selected traits in both plants and

animals, though the estimates for animals were larger than

those for plants (figure 7a). The opposite trend was present

in estimates for var(l) with the estimates for animals being

somewhat lower than those for plants (figure 7b). The wide

overlap of credible intervals indicates low confidence in both

these trends however. Finally, our estimates for El show a

decreasing trend from life-history to morphology to sexually

selected traits in both plants and animals, again with higher

estimates for plants than for animals (figure 7c).
4. Discussion
Predicting the rate and direction of phenotypic evolution is a

fundamental challenge in evolutionary genetics [1–4,54], and

the multivariate breeders’ equation is a key tool. Estimates of

G, selection and of response are available in the literature

from many systems (though rarely reported together). Here,

we have integrated these data to ask whether some traits

evolve more rapidly than others, and whether differences

associate with selection, G or both.

Reviews such as this are unavoidably limited by the avail-

ability of published genetic parameters, and the resulting

imbalances in the data. Nevertheless, we find some evidence

that in animals—though not plants—sexual traits evolve

faster than morphological traits. We find no evidence that

this is due to stronger selection operating on these traits rela-

tive to morphological and life-history traits. We found weak

evidence for differences in the evolutionary potential of G
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among trait types, though this fails to provide an explanation

for any increased rates of evolution.
(a) Similarities among measures of the size and
structure of G

We examined a number of the measures that have been pro-

posed to assess the size, shape and structure of G (table 1).

Many of these measures have considerable shared information

(figures 4 and 5). Broadly, one group expresses the magnitude

of G and a second relates to the evenness/variance of the

eigenvalues, or eccentricity of G. While there may be particu-

lar instances where these measures result in widely divergent

estimates, with respect to the empirical estimates we have col-

lated, the marginal benefits of using all of them are an

illustration of diminishing returns. It remains possible that

subtle differences among these measures may provide impor-

tant insights into the structure of G in the future. We speculate

that one potential use (which would require considerable

additional research) may be analogous to the population gen-

eticists’ use of the parameter Tajima’s D, which is a scaled
measure of two different estimates of the population mutation

rate, 4Nem.

One surprising observation that emerges from our

results is that the number of traits (n) used to estimate G is

not well correlated with any of the measures we used. One

potential explanation for this is that the magnitude of the

principal eigenvalue of G is so highly correlated with ‘total

genetic variation’ (the trace of G). This suggests that an

overwhelming proportion of all of the variation is found

along this principal vector (which would differ for each G),

consistent with previous studies [9,20,23]. It is known that

estimating G can be difficult and insufficient sampling

at the level of families can inflate the magnitude of the princi-

pal eigenvalue, at the expense of the minor eigenvalues

[55,56]. However, we saw no signal of such an effect

from this database with any measures that capture eccentri-

city for G (electronic supplementary material, figures S4

and S5). As we did not have the raw data to recompute G

in a consistent framework, it is unclear how substantial this

bias might be.

It is well known that scaling trait values by the mean

versus the standard deviation can have profound impacts
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on univariate measures such as heritability. Likewise, this

would be expected for multivariate extensions such as G

and measures extracted from them as used here. Unfortu-

nately, in many instances, the vector of trait means was

unavailable, and thus our analysis for mean-scaled G is a

subset of that for the correlation matrices.

(b) Rates of evolution vary among traits
Reviews based on published estimates of evolutionary rates

[30,31] have provided a number of important insights into

the evolutionary process. Hendry & Kinnison [30] provided

the foundations for measuring evolutionary rates and used

a small sample of published estimates to propose that rapid

evolution should be viewed as the norm rather than the

exception. In a larger study, Kinnison & Hendry [31]

showed that the frequency distribution of evolutionary rates

measured in haldanes is lognormal (i.e. many slow rates

and few fast rates, median haldanes ¼ 5.8 � 1023) and that

life-history and morphological traits appear to evolve equally

as fast when measured in haldanes. In agreement with these

reviews, we found that the frequency distribution of evol-

utionary rates in our study was also lognormal and that the

median rate across trait types and taxa was similar (median

haldanes ¼ 7.6 � 1023) to that reported in Kinninson &

Hendry [31]. We found little evidence to suggest that the

evolutionary rates of life-history and morphological traits dif-

fered in animals, though there is evidence for faster rates in

plant life history. Our findings provide some evidence for

a general pattern of faster evolution in sexual traits in ani-

mals to add to the highly cited individual examples of very

rapid evolution of sexual traits [57,58] and their role in specia-

tion [59,60]. It is worth noting that we used a different

method for scaling data, as well as the inclusion of labora-

tory-based studies of evolutionary rates, which differs from

some other recent studies such as Uyeda et al. [46]. Future

work examining how different methods of examining rate

and the inclusion of laboratory versus field samples influence

the overall observed pattern is warranted.

(c) The strength of selection varies among traits
Reviews synthesizing estimates of selection are extensive

[33–39]. In their seminal review, Kingsolver et al. [33] found

that the frequency distributions of linear and quadratic selec-

tion gradients were exponential and generally symmetrical

around zero. This suggests that stabilizing and disruptive

selection occur with equal frequency and with similar strength

in nature. Kingsolver et al. [33] also found that the magnitude of

linear selection was on average greater for morphological

rather than life-history traits. The most recent review [38]

containing an updated dataset and using formal Bayesian

meta-analysis to control for potential biases [34,35,37] con-

firmed many of the main findings of Kingsolver et al. [33],

with the notable exception that linear selection appears

stronger in plants than animals.

In agreement with this most recent synthesis [38], we found

that the distribution of linear and quadratic selection gradients

were exponential. Our estimates for absolute linear selection

gradients were higher than reported by Kingsolver et al. [38]

(0.24 (0.17–0.26) versus 0.14 (0.13–0.16)). There has been

much discussion on the general limitations of using selec-

tion gradients in synthetic reviews [33,35,37,38], and these

arguments undoubtedly also apply to our study. However,
as most of these limitations are inherent to both studies, they

are unlikely to explain the observed differences. Furthermore,

we used the same Bayesian framework as Kingsolver et al.
[38], so it is unlikely that our analytical approach generated

the observed differences. The most likely reason for the

observed differences is the way that traits and taxa were cate-

gorized across these studies. Kingsolver et al. [38] used four

different trait categories (size, morphological (not including

size), phenology and life history (not including phenology))

and categorized taxa as invertebrates, vertebrates or plants in

their analysis. By contrast, we distinguished only between ani-

mals and plants and used three different trait categories

(morphological, life history and sexual) in our analysis, the

latter of which includes a mixture of morphological and behav-

ioural traits. Thus, there are likely to be some differences in how

selection gradients are distributed among categories in our

analyses compared with those in Kingsolver et al. [38]. Irrespec-

tive of the underlying reasons for these differences, we find

little evidence for differences in the magnitude of selection

gradients across trait types and taxa.
(d) Evolutionary response and the structure of G
After decades of quantitative genetic research, it is now widely

accepted that the additive genetic variance–covariance matrix

(G) plays a major role in facilitating/constraining phenotypic

evolution [16,19,20]. The way in which G shapes pheno-

typic evolution can be envisaged using the concept of genetic

degrees of freedom (figure 1; [9,15]). Whenever there is gene-

tic covariation between the individual traits contained in G,

there is the potential for fewer axes of genetic variation than

observed traits [9,15,61,62] (but see [63]), which can influence

evolutionary rates [64]. Where the majority of the genetic var-

iance is concentrated in a few directions—known as ‘LLER’

[15]—these have been shown to play an important role

in directing the short-term evolutionary trajectory of a popu-

lation [15,65–69]. Quantifying these properties of G is an

essential step if we are to explore these ideas empirically.

Perhaps unsurprisingly, it seems that the magnitude of a

matrix is somewhat more straightforward to describe with a

scalar measure than the eigenvalue evenness/eccentricity/

dimensionality. The measures available for quantification of

the shape of G in multiple dimensions are much less tightly

intercorrelated than those dealing with matrix magnitude

when compared using empirical data. What this ultimately

means for our understanding of evolvability is unclear, but

it is important to acknowledge the gaps in our current

understanding if we are to progress.

Our finding that genetic variance for sexual traits may be

spread less evenly across dimensions in animals runs counter

to our hypothesis, and suggests that the potential for genetic

constraint does not explain the higher rate of evolution we

observe for these traits. We found, at best, only weak evi-

dence for differences in the measures to capture the size

and shape of G, with respect to our trait groupings. There

has been debate over the importance of sexual selection in

plants [70], but there is theoretical [48] and empirical [71] evi-

dence suggesting that floral morphology is indeed subjected

to sexual selection. Unfortunately though, there are currently

no available data on evolutionary rates for sexual traits in

plants, making it difficult to understand the implications of

this increased dimensionality. Our findings indicate that the

subject warrants greater attention.
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(e) The effect of trait scaling
Researchers need to remain mindful that decisions about

measurement scaling are likely to be important when

measuring selection [35] and genetic variability [6]. This is

especially important when addressing the question of evolva-

bility, where both these measures must be brought together

[19]. In this paper, we have attempted to present a clear pic-

ture of the patterns present in the currently available data, but

it is important to acknowledge the known shortcomings of

that data. This is not to understate the difficulty of maintain-

ing comparability among studies wherein the appropriate

scales might be different [6,35,72]. To illustrate the problem,

how best to compare morphological data comprising linear

measurements with life-history data where there may be no

natural zero value? As a field, our inferences about selection

and the response to selection will be more meaningful the

more clearly we can address these issues.
69:20130252
5. Conclusion
Collectively, our results suggest that the higher rate of evol-

ution observed for sexual traits in animals is only weakly

associated with the scalar measures summarizing G for

these traits, and we do not find stronger selection. However,

as our dataset is based on derived estimates there are a

number of inevitable limitations that apply to our findings.

First, there are limitations with using the matrix structure

measures (nD, El, var(l) or varrel(l)) to capture the dimen-

sionality of G [20]. Although these measure are calculable

from published estimates of G, they do not explicitly test
how many of the dimensions of G actually exist (i.e. have

statistical support). A number of approaches [61,63] have

been taken to directly estimate the dimensionality of G

[61,73], though such studies have found both populations

that have evolutionary access to all dimensions of G [63]

and others that are constrained by LLERs [61,74]. Second,

our analysis does not consider the alignment between the

vectors of selection and G. LLERs only constrain the response

to selection when they are poorly aligned with vectors of

selection [26,28,64]. These limitations can be resolved only

by further analysis of the raw datasets from the original

studies we review. This is particularly true for better esti-

mation of G itself, as well as its actual dimensionality,

which can only be performed with the raw data

[56,61,63,75–77]. Future studies would greatly benefit from

researchers publishing raw datasets in open repositories

[78] and we encourage researchers to do so.
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