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Patterns of fluctuating asymmetry in beetle
horns: no evidence for reliable signaling

John Hunt and Leigh W. Simmons
Department of Zoology, The University of Western Australia, Nedlands, WA 6009, Australia

Negative relations between trait size and levels of fluctuating asymmetry in secondary sexual traits have been claimed to be
indicative of honest signaling of male quality. Comparative studies of beetle horns have been used to illustrate the required
negative relation between trait size and asymmetry. However, such studies may be confounded by measurement error or sampling
bias due to population differences or differences within species in the phenotypic expression of hornedness. We examined the
patterns of fluctuating asymmetry within two species of horned beetle. We found that, in agreement with theory, horns exhibit
greater asymmetry than naturally selected traits. However, we found a strong positive relation between horn size and asymmetry
in Onthophagus taunts, a species with male dimorphisms, and a flat relation in Bubas bison, a species with continuous variation
in horn size. We suggest that these differences may reflect functional differences in horns. We conclude that patterns of
asymmetry in horned beetles do not support the notion of honest signaling. Key words: beetle horns, Bubas bison, fluctuating
asymmetry, honest signaling, Onthophagus tavrus, sexual selection. [Bthav Ecol 9:465-470 (1998)]

Morphological traits differ in the degree to which they are
developmcntally canalized during development, ac-

cording to their functional importance (Mailer, 1995a; Mailer
and Pomiankowski, 1993; Palmer and Strobeck, 1986). Traits
that have high functional importance are typically highly can-
alized and developmentally stable and thus demonstrate low
levels of fluctuating asymmetry (FA). Traits that have less func-
tional importance are frequently less stable and have higher
levels of FA. This has been highlighted by an apparent di-
chotomy between secondary sexual and nonsexual morpho-
logical traits. Various studies have demonstrated that the de-
gree of FA in male sexual ornaments and/or weapons gen-
erally exceeds that in other nonsexual morphological traits
such as legs or wings (Mailer, 1992; Mailer and Eriksson, 1994;
M011CT and Hoglund, 1991; but see Balmford et al., 199S).
Similarly, sexual traits in males generally possess higher levels
of FA than homologous, and presumably nonsexual, traits in
females (Manning and Chamberlain, 1993; Mailer and Hog-
lund, 1991).

Mailer (1993a) argued that the relationship between trait
size and FA may be a potential indicator of individual quality.
Individuals of low phenotypic and/or genetic quality are pro-
posed to invest relatively more in the production of small
traits, with the cost of high investment manifest as high levels
of FA. In contrast, individuals of superior quality are proposed
to invest relatively less and to be able to produce larger yet
more symmetrical traits. Mailer (1990, 1992, 199Sa,b) and
Mailer and Hoglund (1991) thus propose that negative rela-
tions between trait size and asymmetry serve as honest signals
of male quality. Negative relations between FA and trait size
have been demonstrated for some taxa (Manning and Cham-
berlain, 1993; Manning and Hartley, 1991; Mailer, 1990,
1993b; Mailer and Eriksson, 1994,1995) but not others (Allen
and Simmons, 1996; Evans et aL, 1995; Mateos and Carranza,
1996; Mailer et aL, 1996; Tomkins and Simmons, 1995).

In bis comparative study of the patterns of FA in the horns
and elytra of eight species of horned beetles, Mailer (1992)
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demonstrated that die degree of FA in horns was considerably
larger than in elytra. In addition, he found that, on average,
the relation between absolute FA and trait size was negative
for horns and flat or U-shaped for elytra. From this Mailer
(1992) concluded that the patterns of FA in die horns of bee-
des may honestly signal male competitive ability. There are
several problems with this study and widi many of the studies
of FA cited above. Rarely do these studies adequately account
for measurement error which has statistical properties iden-
tical to FA, and often, particularly widi comparative studies,
they may be confounded by sampling bias; since both die level
of FA and die size of die trait are often environmentally de-
termined, a negative relation between FA and trait size might
be expected as a confounding result of heterogeneous sam-
pling (Simmons et aL, 1995; Swaddle et al., 1994). One par-
ticular problem widi Mailer's (1992) study of beede horns is
that, within species males are often dimorphic for the expres-
sion of horns (Eberhard and Gutierrez, 1991; Otte and Stay-
man, 1979); only males of high phenotypic quality produce
horns (Emlen, 1994; Hunt and Simmons, 1997) so that pool-
ing data on FA across morphs may represent a form of sam-
pling error (Tomkins and Simmons, 1996). This may be par-
ticularly true because, in beedes, horned males can represent
a cohort of superior phenotypic quality (e.g., Brown and Bar-
talon, 1986; Cook, 1990; Emlen, 1994; Hunt and Simmons,
1997; Goldsmith, 1987), so diat large horns and symmetrical
horns may represent dichotomous, rather than continuous,
conditions. Beede horns are subject to strong sexual selection;
homed males outcompete their hornless conspecifics (Emlen,
1997; Siva-Jodiy, 1987) and, among horned males, those widi
longer horns are superior competitors (Conner, 1989; Emlen,
1997). To test Mailer's (1992) findings regarding die levels
and patterns of FA in horned beedes, we examined the rela-
tions between FA and trait size in die sexual and nonsexual
traits within populations of bodi Onthophagus taurus and Bu-
bas bison (Coleoptera: Scarabaeidae).

METHODS

We collected Onthophagus taurus from Narikup (34°45' S,
117°4r E), approximately 370 km soudi of Perth, Western
Australia, and Bubas bison from Kojonup (33°51' S, 117°01'
E), approximately 260 km south of Perth. Animals were col-
lected by overturning fresh dung pads and extracting beedes
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Figure 1
Scanning micrographs show-
ing the horn structures of (A)
Bubas bison and (B) Onthopha-
gus taunts.

by hand as they attempted to bury into the underlying soil or
move back through the pad. Beetles that escaped down their
burrows were unearthed and also collected. For each species,
animals were sampled from the same local population and on
the same day.

Patterns of trait size and FA

For O. taunts, we measured size and FA in the paired head
horns and the elytra of males and in the elytra of females. In
B. bison FA was measured in the paired head horns and hind
femur of both males and females. We also measured the size
of the central pronotal horn of male B. bison (Figure 1). In
each case FA was calculated by subtracting the left from the
right side. The selection of morphological traits was based on
the following criteria: (1) ease of measurement, which was
largely determined by the presence of well-defined measure-
ment landmarks, (2) traits that were less vulnerable to damage
(e.g., hind femurs were less frequendy worn or damaged than
fore femurs), (3) both trait size and FA had to be measured
with a high repeatability and a low level of measurement er-
ror, and (4) traits being used in FA examination had to con-
form to the statistical guidelines of FA (Swaddle et al., 1994).
Where possible we measured the homologous traits in females
to ascertain the differential selective pressures acting on the
sexes. In both species, pronotum width was measured as an
index of body size.

All FA measurements were made twice. Measurement error
was estimated for the level of signed FA in bilateral traits fol-
lowing method 1 of Merili and Bjorklund (1995). FA mea-
sures are especially sensitive to measurement error because
the magnitude of FA is usually small (often :£ 1-5% of the
total variation in a given trait) and is random by definition.
Therefore, more than a single measurement is required to
accurately assess the magnitude of FA relative to measurement
error (Merila and Bjorklund, 1995; Yezerinac et al., 1992).
Sexes, and where present male morphs (see below), were
treated separately.

We assessed the presence of significant FA using procedures
recommended by Palmer (1994). A mixed-model ANOVA us-
ing sides (left or right), individuals, and replicate entered as
main factors provides an interaction variance, individual-by-
sides, that is an estimate of the asymmetry variance. This was

compared with die variance due to measurement error (see
also Swaddle et al., 1994). Traits were accepted as showing FA,
rather than antisymmetry, if the signed asymmetries were nor-
mally distributed (determined by a Kolmogorov-Smirnov
goodness-of-fit test) around a mean of zero (determined by a
one-sample t test) or, if diey did differ from normality, diey
only did so through leptokurtosis and not platykurtosis or
skewness (Palmer and Strobeck, 1986). Leptokurtosis in the
adult population is expected to arise through selection oper-
ating against asymmetric individuals during the course of de-
velopment (Naugler and Leech, 1994; Ueno, 1994). In con-
trast, platykurtosis is likely to reflect a developmental bias gen-
erating antisymmetry (Palmer and Strobeck, 1986). If FA was
non-normally distributed, both skewness and kurtosis were
tested to determine die underlying cause. The statistical prop
erties of our FA measures are given in Table 1.

We used mixed-model ANOVAs to control for measurement
error variance when examining differences in FA between
traits or between species. Variance ratio tests were performed
using degrees of freedom calculated according to Palmer
(1994). For heuristic purposes, we present the mean absolute
values of FA or relative FA to illustrate the observed differ-
ences between samples, in addition to the measurement error-
corrected variances in FA obtained from die mixed-model AN-
OVAs (measures FA,, FAj, and FA10 respectively; see Palmer,
1994). Means are presented ±1 SE.

RESULTS

Horn morphology

Variation in horn size differed between die two species ex-
amined. There was sigmoidal variation in horn height widi
increasing pronotum width in O. taunts (Figure 2) and con-
tinuous variation in horn height with increasing pronotum
width in B. bison (Figure 3). These different relations suggest
that male O. taunts are dimorphic for horn morphology;
whereas B. bison exhibit continuous growth. The existence of
male dimorphisms was tested statistically using die models out-
lined by Eberhard and Gutierrez (1991).

First, die relationship between pronotum width and horn
height in male O. taunts and horn height and pronotal horn
height in B. bison were examined to assess nonlinearity across
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TaWel

Species

0. taurus
Major males

Horn height
Elytra length

Minor males
Horn height
Elytra length

Females
Elytra length

B. bison
Males

Horn height
Hind femur length

Females
Paired horn height
Hind femur length

/•(df)

2.72 (52, 106) • «
1.64 (52, 106)**

137 (82, 166)**
1.78 (82, 166)***

1.69 (99, 200)***

12.86 (82, 166)***
134 (82, 166)**

3.45 (89, 180)***
1.98 (89, 180)***

ME (%)

3.06
12.21

4.70
8.24

20.06

3.75
' 12.25

12.97
10.27

Skewnest (g,)

-0.100
-0.032

0.234
0.007

0.017

-0.010
0.152

-0.401
0.179

Kurtosis

0302
1.676*

1360**
0.879

1.807***

3.653***
0.831

0373
0.996*

'. taunts ana o. tnsvn

(g,) Mean (±SE)

0.002 ± 0.007
0.000 ± 0.001

-0.000 ± 0.002
-0.001 ± 0.001

-0.000 ± 0.001

-0.005 ± 0.006
0.002 ± 0.002

0.000 ± 0.000
0.000 ± 0.000

F ratios derived from mixed-model ANOVAs contrasting fluctuating asymmetry variance with measurement error.
»p ss .001, •• p s .01, • p s .05.

males. Nonlinearity is expected if there is a critical body size
after which beetles switch to producing a major body plan
(Eberhard and Gutierrez, 1991; Emlen, 1994; Otte and Stay-
man, 1979). A partial regression of log. (pronotum width)
and [log,, (pronotum width)]1 on log. (horn height) gener-
ates two partial regression coefficients (»! and °°,), where an
oo, that differs significantly from zero confirms nonlinearity
and the possible existence of a switch point (Eberhard and
Gutierrez, 1991; Emlen and Wirege, 1992). The data for both
O. taurus (horn height « , = 32.89 ± 14.82, t = 2.3S6, df =
147, p = .021; Figure 2) and B. bison (horn height: « , =
-14.55 ± 2.86, t = 5.082, df = 92, p < .001; pronotal horn
height: » t = -12.38 ± 2.55, t = 4.857, df = 92, p < .001;
Figure 3) showed significant deviations from linearity. There-
fore, the data from both species was examined for the pres-
ence of a switch point, a pronotum width at which beetles
switched from producing minor horns to major horns. This
was accomplished by extending the partial regression equa-
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Figure 2
Relation between male body size and horn size in Onthophagus
taurus.

tion to Y = Po + P,X + B,(X ~ X°)D + W> + «. where Y
= horn height, X •= pronotum width, X° is the proposed
switch point where D = 0 if X < X3, otherwise D = 1, pi are
the regression coefficients, and e is the random component
with assumed normal distribution, mean zero, and a common
variance (Eberhard and Gutierrez, 1991). To determine which
switch point gave the best fit, 10 different hypothetical switch
points were tested, ranging from 2.72 to 2.85 mm in O. taurus
and from 5.4 to 6.2 mm in B. bison. These produced a range
of adjusted »* values (O. taunts: .595-.642; B. bison: .S8-.72)
from which the pronotum width corresponding to the maxi-
mum r* value was taken as the most likely switch point The
highest adjusted i* occurred at a pronotum width of 2.783 mm
in O. taurus, and ranged between 5.863 and 5.923 mm in B.
bison. In B. bison the middle value of the adjusted »* range
(5.893 mm) was used in subsequent tests for dimorphism.

Using the best switch point values for both O. taurus and
B. bison, we tested the data to determine if the variation in
horn size was continuous or discontinuous at the hypothetical
switch point (null hypothesis: P, « 0) (Eberhard and Gutier-
rez, 1991). Pswas found to be significantly > 0 in O. taurus
(horn height ps = 0.34 ± 2.54, t - 2336, df = 147, p =
.012), demonstrating a discontinuity between male morphs at
the switch point Ps in both horn height and pronotal horn
height of B. bison did not differ significantly from zero (horn
height 0.07 ± 0.06, t = 1.133, df •= 92, p = .26; pronotal
horn height -0.08 ± 0.09, t = 0.868, df - 92, p = .39), which
suggests that variation in these male traits were continuous
rather than discontinuous.

Testing the change of linear slope of horn height versus
pronotum width at the switch point confirms the existence of
a significant switch point in O. taurus (null hypothesis: P, °
0; & 5.24 ± 0.90, t = 5.838, df = 147, p < .001). As a result,
O. taurus can be separated into two discrete male morphs,
with males having a pronotum width 'Z. 2.783 mm being
classed as major morphs and males with a pronotum width <
2.783 mm being classed as minor morphs. All subsequent
analyses are based on these classifications. In contrast, B. bison
males did not show two discrete male morphs but instead
demonstrated a nonlinear, continuous relation between horn
and body size.
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Figure 3
Relation between male body size and (a) paired head horn size and
(b) pronotal horn size in Bubas bison.

Patterns of FA

Spearman rank correlations revealed a significant positive re-
lation between absolute FA and born size within both morphs
of male O. taurus (Table 2). Similarly, a significant positive
relation between FA and paired horn sixe was observed in
female B. bison (Table 2). No significant relations between
absolute FA and trait size were demonstrated in any of the
other morphological traits examined (Table 2). The above
analyses do not partition, measurement error from FA vari-
ance. Mixed-model ANOVAs can be used to partition FA vari-
ance when comparing populations, but this method cannot
provide measures of FA for among individual analyses (Mailer
and Swaddle, 1997). Nevertheless, given significant repeat-
ability of the signed FA measures (Table 1) and the calcula-
tion of mean values of absolute FA from repeated measures
of all individuals, our analyses should provide reasonable ap-
proximations to the true relationships (see below).

We can control for measurement error in comparisons be-
tween samples. After partitioning measurement error vari-
ance, horn FA was greater In major male O. taurus ttian in
minor males (F,t 6 =» 8.54, p = .008; Table 2). This is consis-
tent with our among-individual analysis, where FA increased
with horn size. To control for allometric m-aling of FA with
horn size, we divided each of the left and right horn measures
by the overall mean horn size (Le., the mean of our two left

and two right measures) and log transformed the product.
The effectiveness of this scaling was confirmed by assessing
the significance of the variance contribution due to individ-
uals over the individual-by-side variance from mixed-model
ANOVAs (Palmer and Strobeck, 1986). Although there was
no relation between elytra length and FA in either morph
(Table 2), for consistency we used the same scaling procedure
throughout Relative horn FA was greater in major males than
in minor males (F^ „ •=• 37.17, p < .001); the relative FA in
elytra did not differ between morphs (Fl09 *» 1.13, p = .434).

We used the same scaling procedure for our between-trait
comparisons. Relative FA was consistently greater in the horns
of males than it was in their corresponding nonsexual traits
(O. taurus: majors F^ , = 335.09, p < .001; minors FA 10 =
8.00, p < .001; male B. bison: F^, - 291.55, p < .001). The
horns of male B. bison had greater relative FA than the ho-
mologous trait in females (F^ ,0 = 532.99, p < .001). More-
over, the horns of females were no more asymmetrical than
their hind tibia (Ftl_ I0 = 1.56, p = .239; Table 2). The critical
Bonferroni probability for the five variance ratio calculations
performed using data for O. taurus (pM = .01) and three
variance ratio calculations performed using data for B. bison
(pM =» .017) were greater than the individually significant
probabilities in all cases.

DISCUSSION

The data presented here for O. taurus and B bison are in
agreement with the notion diat sexually selected characters
demonstrate higher levels of FA than do nonsexual traits
(Manning and Chamberlain, 1993; Mailer, 1992; Mailer and
Eriksson, 1994; Mailer and Hoglund, 1991; but see Tomkins
and Simmons, 1995). Miller (1992) found similar patterns in
his comparative study of beetle horns, where the levels of rel-
ative FA in horns were nearly six times as large as in nonsexual
elytra. Mailer's (1992) analysis did not distinguish between
measurement error and FA. Bjorklund and Merili (1997) sug-
gest that the estimates of FA in Mailer and Hoghind's (1991)
study of avian feather ornaments may be inflated by an aver-
age of 526%, so the differences observed between sexual and
nonsexual traits may simply reflect the fact that sexual traits
are harder to measure. However, after removing variance due
to measurement error from our analysis, we still found that
the levels of FA in beetle horns were considerably higher than
in elytra. Disparate levels of FA in morphological traits have
been proposed to reflect the different nature of selection op-
erating upon them (Mailer, 1993a). Natural selection against
FA in mechanically functional traits, such as elytra or legs, is
expected to favor the action of genetic modifiers that canalize
developmental processes and reduce phenotypic variance
(Soule, 1982; Soule and Couzin-Roudy, 1982). Conversely, be-
cause secondary sexual traits are typically subject to strong
directional selection, which disproportionately favors individ-
uals with greater than average values, selection is expected to
oppose genetic modifiers that canalize development, thereby
increasing phenotypic variance and hence levels of FA (MoD-
er, 1993a).

Mailer (1992) concluded that beetle horns were an honest
signal of male competitive ability because those individuals
with large horns were also able to produce more symmetrical
horns. In general, a negative relation between trait size and
symmetry has been predicted for traits that honestly signal
individual quality (Mailer. r992; Mailer and Hoglund, 1991).
However, our data provide no evidence for die honest signal-
ing hypothesis within the species of horned beedes that we
studied. In contrast to Mailer's (1992) comparative study, we

• found that for O. taurus there was a strong positive relation
between horn size and FA for both major and minor morphs,
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Table!

Mean ahsrcluTc mo mnnv
traiti of O. hatrus and B.

Trait

O. taurus
Minor

Horn height
Elytra length

Major
Horn height
Elytra length

Female
Elytra length

B. bison

Male
Horn height
Hind femur length

Female
Paired horn height
Hind femur length

e nnctmumg asymmetry (tA.) ana mar
bisom

Absolute FA

Mean

0.010
0.006

0.045
0.005

0.005

0.032
0.014

0.010
0.011

6.54 X 10-»
2.55 X 10-»

538 X 10-*
1.92 X 10-»

1.82 X 10"5

1.56 X 10-'
1.73 X \0-*

8.29 X 10->
7.52 X 10"»

Relative FA

Mean

0.040
0.002

0.035
0.001

0.002

0.027
0.003

0.099
0.002

o*

3.99 X 10-*
4.99 X 10-'

1.48 X 10-"
4.43 X 10-'

3.84 X 10"'

1.89 X 10~«
6.49 X 10"'

3.55 X 10-'
5.52 X 10-'

c error tor me t>uati

n

0.664**
-0.041

0.711**
-0.222

-0.074

0.081
-0.160

0.240*
-0.133

crauy purea

n

83
83

53
53

100

83
83

90
90

Spearman rank correlation coefficients (r, values corrected for ties) show the relations between trait size and absolute asymmetry.
•*p< .001, *p < .05.

whereas for B. bison the relationship was flat. The paired head
horns of O. taurus are used either to block the entrance to
breeding tunnels or to push against intruding males. Males
with longer horns have a competitive advantage over males
with smaller horns (Moczek, 1996; see also Emlen, 1997). In
the absence of selection against FA, selection for increased
trait size is expected to generate positive size-dependent asym-
metry (Moller, 1993a). In contrast, the paired head horns of
B. bison articulate with the single pronotal horn in a manner
similar to that noted in Podischnus agenor, where the horns
function as a grasping apparatus used in conventional dis-
putes between males (Eberhard, 1979) (Figure 1). Natural se-
lection should oppose FA in such structures to ensure their
mechanical function can be performed effectively. We believe
that, in general, the functionality of secondary sexual traits
may prove important in explaining differences in the ob-
served influence and patterns of FA. Flat relations between
trait size and asymmetry have been reported for other sec-
ondary sexual traits that serve a mechanical function, such as
the forceps of earwigs (Tomkins and Simmons, 1995) and the
wing clamps of sepsid dungflies (Allen and Simmons, 1996).

Our results raise an important issue concerning the ob-
served negative FA-trait size relationships reported in other
studies. We found that measurement error for signed FA was
greater for small horns than for large horns; in O. taurus
measurement error for minor male horns was 1.5 times that
for major male horns, whereas the small horns of female B.
bison had 4 times the measurement error of male horns. Neg-
ative size-biased measurement error appears to be quite com-
mon in the measurement of morphological characters Ofc-
zerinac et aL, 1992). The fact that absolute FA always has high-
er measurement error than signed FA (Bjorklund and Merila,
1997; Merila and Bjorklund, 1995) compounds the problem.
Thus, measures of absolute FA for small traits will be inflated
by measurement error to a greater degree than those of large
traits, so that a negative relationship between absolute FA and
trait size may reflect size-dependent measurement error. Our
observation of positive relationships between absolute FA and

horn size in O. taurus are thus likely to be conservative be-
cause our estimates of absolute FA in small horns win be in-
flated by measurement error to a greater extent than our es-
timates of absolute FA in large horns. To our knowledge, no
other studies have accurately assessed the effects of measure-
ment error when examining patterns of FA with trait size.

In conclusion, although the patterns of FA observed in the
sexual and nonsexual traits of O. taurus and B. bison are in
general agreement with the prediction that naturally selected
traits are typically more highly canalized during development,
the patterns of FA in beetle horns are inconsistent with the
honest signaling hypothesis (Meller, 1992, 1993a; Mailer and
Pomiankowski, 1993). Recent studies show that negative re-
lations between trait size and FA can characterize bilaterally
paired traits when asymmetry is not subject to sexual selection
(Polak, 1997; Veiga et aL, 1997). Conversely, traits that are
both indicative of male quality and subject to sexual selection
may not show the predicted negative relations (Kimball et aL,
1997; Markow et aL, 1996). Rowe et al. (1997) have shown
that most studies supporting th.e notion that negative size-de-
pendent asymmetry reflects individual quality in fact repre-
sent cases of antisymmetry rather than FA. Moreover, they
note that, nnli1ri» antisymmetry, FA is unlikely to be a reliable
signal because symmetrical individuals will be common in
classes of individuals in poor condition. The resolution of con-
flicting evidence clearly lies in a better understanding of the
development and nature of the observed asymmetries in sec-
ondary sexual traits and a more accurate partitioning of mea-
surement error from FA data.
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