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Evolution is best viewed as a multivariate process making

a working knowledge of linear algebra a great aide in our

understanding of this process (Lande & Arnold, 1983;

Manley, 1985; Endler, 1986; Phillips & Arnold, 1989).

We therefore are in general agreement with the main

thrust of Blows’ (2007) argument – a fuller appreciation

of multivariate methods, particularly those that employ

the diagonalization of the G and c matrices, can aid our

understanding of microevolutionary change. Neverthe-

less, the approach advocated by Blows (2007) is not a

panacea that solves all problems in multivariate evolu-

tionary analyses, and there are circumstances where the

diagonalization of the G and c matrices is either

inappropriate or inferior to alternatives. In our opinion,

the utility of matrix diagonalization is largely determined

by the particular question of interest and the biology of

the system examined. In support of our arguments, we

discuss how matrix diagonalization can obscure the

biological interpretation of a complex data set. We then

discuss how the benefits of matrix diagonalization in

evolutionary studies vary with the specific question

addressed.

Biology and symmetric matrices

Organisms are made up of many interacting parts that are

often shaped by selection to function as integrated units

(or character) (Cheverud, 1982, 1996). In order to

understand the evolution of such complex multidimen-

sional characters, we must simplify the system to an

understandable level that allows for biological interpret-

ation. One of the major strengths of the multivariate

approach is that it summarizes the entire pattern of

(co)variation in a series of successive orthogonal axes,

thereby removing the need to interpret single traits on an

element-by-element basis. Given that a symmetric mat-

rix with k traits contains k(k + 1)/2 elements, it can be a

formidable task to interpret individual elements even

when k is not particularly large.

Unfortunately, biology is rarely as simple as the above

statistical procedures would dictate. Although matrix

diagonalization is mathematically convenient, there are

circumstances where it obscures biological interpretation.

First, it is unlikely that causal factors will always have

orthogonal effects on the phenotype – Houle et al. (2002,

pp. 434–435) describe such a cautionary tale. Complex

phenotypes are composed of many different measurable

components, but it is unlikely (if not impossible) that

each of these components will have exactly the same

function. Consequently, we often do not know how to

define a ‘functionally related’ character and, therefore, to

decide on the appropriate unit of selection (Wagner &

Laubichler, 2000). Thus, a misguided solution is to

measure everything possible and then use matrix

diagonalization to identify the dimensions of variation

and define the character. Although each orthogonal axis

represents a new ‘trait’ that can be defined by its

eigenvector (Phillips & Arnold, 1989), such axes do not

necessarily correspond to multivariate patterns of func-

tional variability (Cheverud, 1982; Mitchell-Olds & Rut-

ledge, 1986). In such instances, matrix diagonalization

may actually disrupt or obscure the biologically mean-

ingful units of variation.

Consider the case where understanding pleiotropic

relationships between functional units of a character,

such as those in the mouse mandible (Schwenk, 2001), is

the goal. The mouse mandible has clearly identifiable

functional units that are genetically and developmentally

integrated with a modular structure (Cheverud, 2001).

However, despite the modular structure of variation,

there are still very large genetic covariances between the

modular functional units of the mandible due to whole-

mandible pleiotropic effects (Cheverud, 2001). If one

diagonalizes G, the first eigenvalue contains significant

variation from all functional units due to these pleio-

tropic effects. In such instances, it is preferable to extract

eigenvalues from each of the individual modules and

then directly estimate genetic parameters in these

dimensions (Kirkpatrick & Meyer, 2004; Meyer &

Kirkpatrick, 2005). This reduces the number of dimen-

sions to be examined but keeps the modular structure

intact. Alternatively, where the nature of the covariance

structure is known a priori, confirmatory factor analysis

and/or structural equation modelling may be a more

promising approach (Houle, 2001; Houle et al., 2002).

A second issue, as noted by Lande & Arnold (1983), is

that selection analyses based on orthogonal transforma-

tions of the data [such as principle components (PCs)]

can obscure the relationship between the individual traits

and fitness. This occurs because, in the eigenvectors of

the PCs that define the new composite ‘traits’ created by

the transformation, traits that are subject to selection are

associated with traits that are not experiencing selection

(Lande & Arnold, 1983). Whenever traits that are the

targets of selection have a substantial phenotypic

covariance with traits unrelated to fitness, the use of

orthogonal transformations may dilute the ability to

detect the effect of selection (Mitchell-Olds & Shaw,
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1987). Thus, selection analyses performed on orthogonal

transformations, particularly when associated with sub-

stantial multicollinearity in the data set, should always be

interpreted with caution (Lande & Arnold, 1983; Mit-

chell-Olds & Shaw, 1987). The value of orthogonal

transformations may be more as a first step for deriving

hypotheses that can be followed up with manipulative

experiments (Manley, 1985; Endler, 1986; Mitchell-Olds

& Shaw, 1987).

Finally, in systems with a simple biology, interpreta-

tion may be obfuscated by orthogonal transformation

of the data. We can illustrate this point using Moore’s

(1990) dataset examining episodes of sexual selection

acting on sexually dimorphic traits in the dragonfly,

Libellula luctuosa. Although the traits in this study were

simple linear measurements, it is likely that a large

proportion of the biological reality was captured – the

wings are virtually flat with a simple shape, there are

three (virtually rectangular) brown, white and clear

areas on the wings, and the correlation between the

width of the coloured patches and their area is high.

Although the standard selection gradients significantly

under-estimated the strength of nonlinear selection

(median |c| ¼ 0.52, median |k| ¼ 0.72, Wilcoxon test:

Z ¼ )2.201, n ¼ 6, P ¼ 0.03), as is commonly the case

in studies of selection (Blows & Brooks, 2003), little

interpretive value is gained from a canonical analysis of

the results. For example, regression analysis of mating

success data revealed significant positive directional

selection on brown-patch and white-patch size, quad-

ratic (negative c) selection on body size and positive

correlational selection on brown-patch and white-patch

size (Table 1; Moore, 1990). Canonical analysis of these

data yields two statistically significant axes, m1 and

m4, but no new insight is gained (Table 2). The axis

m1 describes the pattern of linear and nonlinear

selection operating on the size of the brown and white

patches, whereas m4 describes the nonlinear

selection operating on body size. The result is an

individual selection surface with a multivariate saddle

(Fig. 1) that is congruent with intuition based on the

sign and magnitude of the b and c values presented in

Table 1.

Table 1 The vector of standardized linear selection gradients (b) and

the matrix of standardized quadratic and correlational selection

gradients (c). These gradients were rederived, but also published in

Moore (1990).

Traits b

c

WL BP WP BS

Wing length (WL) 0.157 )0.194

Brown-patch size (BP) 0.498* 0.207 )0.217

White-patch size (WP) 0.778** 0.361 0.536* 0.107

Body size (BS) )0.293 0.514 )0.135 )0.368 )0.494*

Randomization tests: *P < 0.05, **P < 0.01, ***P < 0.001.

Table 2 The M matrix of eigenvectors from the canonical analysis

of c. The linear (hi) and quadratic (ki) canonical coefficients along

each eigenvector are given in the last two columns.

M Selection

WL BP WP BS hi ki

m1 0.302 0.460 0.825 )0.125 0.698*** 0.350**

m2 0.804 )0.036 )0.189 0.563 )0.076 )0.060

m3 )0.085 0.884 )0.458 0.023 0.145 )0.369

m4 )0.506 0.070 0.269 0.817 0.035 )0.724*

WL, wing length; BP, brown-patch size; WP, white-patch size; BS,

body size.

Randomization tests: *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 1 Thin-plate spline visualization of the individual selection

surface representing linear and nonlinear selection on m1 and m4.

(a) a perspective view, (b) a shaded contour plot with supporting

data points. Lighter regions indicate higher fitness.
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Matrix diagonalization and biological
questions

Given the importance of G and c to evolutionary theory

(Lande & Arnold, 1983), it is not surprising that many

questions in evolutionary biology require an intimate

knowledge of their structure. If one is trying to describe

the overall variation in G or c, or even how the dominant

axis of G (or gmax) relates to the b vector to examine the

importance of genetic constraints (Schluter, 1996), mat-

rix diagonalization is clearly a useful technique. There

are, however, a number of questions in evolutionary

biology where matrix diagonalization is not useful.

If an examination of the causal relationship between

traits and fitness is the goal, it is unlikely to be

answered convincingly with an observational approach

that characterizes patterns of variation in b or c
(Mitchell-Olds & Shaw, 1987). The biological under-

standing of selection is ultimately the only way to

determine how selection acts on the phenotype

(Manley, 1985; Endler, 1986). To this end, manipula-

tive studies that either break the functional relation-

ships between traits (e.g. Brooks et al., 2005; Bentsen

et al., 2006) or extend phenotypes beyond their

natural range (e.g. Anholt, 1991; Sinervo & Basolo,

1996) have been particularly useful. In systems that

are not as amenable to experimental manipulation,

path analysis may provide an alternative (Scheiner

et al., 2000), particularly because it enables analytic

models to be constructed (and tested) that are based

specifically on the biology of the organism being

examined.

Sometimes estimating important genetic parameters

of evolutionary change, such as the mean phenotypic

response to selection (D�Z ¼ Gb) or the change of G

due to selection within a generation [DG¼G(c)bbT)G],

is the goal. In the former case, matrix diagonalization is

unnecessary because the vector of mean phenotypic

response to selection (i.e. the multivariate breeders’

equation) uses G as a transformation matrix to relate

selection within a generation (b) to changes in trait

means across generations. This gives a concise way of

relating the space of G and b in the D�Z vector without

the need for matrix diagonalization. In the later case,

the diagonalization of c does not provide the correct

characterization of the form of nonlinear selection

because it is the curvature of the adaptive landscape

(i.e. c)bbT) that determines how selection shapes G,

not the curvature of the individual selection surface

(i.e. c) (Phillips & Arnold, 1989). In most cases (when

the trait distribution is approximately multivariate

normal), the adaptive landscape and the individual

selection surface have the same b, but the curvature of

the adaptive landscape often differs considerably from c
because it is weighted (and smoothed) by the pheno-

typic distribution (Phillips & Arnold, 1989). Thus, to

understand the relationship between the structure of G

and patterns of selection, analyse the structure of

c)bbT not c.

Although Blows (2007) gives a cursory discussion to

issues regarding linear selection, nonlinear components

of selection need not be emphasized at the cost of linear

selection. We reiterate the point made eloquently by

Phillips & Arnold (1989): one cannot interpret the

consequences of c without b. For example, the diagonal-

ization of c may reveal a negative eigenvalue for the

major canonical axis suggesting ‘stabilizing’ selection

towards an optimum. However, if there is a strong linear

component along this axis, the pattern of selection

should be seen as linear selection that has curvature

(Lande & Arnold, 1983). Phillips & Arnold (1989)

describe how to characterize both linear and nonlinear

selection within canonical analysis (the ‘A canonical

form’). When linear selection is minimal an alternative

involving an additional transformation (‘B canonical

form’) allows a full description of selection using the

curvature of the individual fitness surface, but additional

restrictions and assumptions are associated with the use

of form B (Phillips & Arnold, 1989).

Finally, if questions of generality and/or compar-

ability are being addressed, then matrix diagonalization

may complicate the direct comparison of two or

more matrices; e.g. when comparing multiple individ-

ual selection surfaces for a common set of phenotypic

traits (e.g. Chenoweth & Blows, 2005). Because the

axes derived from an orthogonal transformation

occupy a unique multivariate subspace that often

differs considerably from the original trait space, the

canonical rotation of the individual fitness surfaces

places the data in different subspaces. Consequently,

any biologically meaningful comparison of the M

matrices between the sexes requires projection into a

common subspace. It is conceptually and computation-

ally simpler to use sequential model building proce-

dures (Draper & John, 1988) to compare selection in

the untransformed space.

Summary

Although we agree that the multivariate approach

advocated by Blows (2007) often provides insights into

current selection, it should not be viewed as a panacea

that solves all problems in evolutionary biology.

Although a multivariate view of evolution clearly

prevails, the difficulty in defining characters, the plethora

of legitimate research goals, and the potential loss of

generality or interpretability can supersede the statistical

sophistication of matrix diagonalization. By identifying

some of the limitations of this methodology we hope that

we clarify when its use is appropriate. Our general

recommendation is that matrix diagonalization should be

used if possible and appropriate – but as always, biolo-

gical questions must take precedence over statistical

techniques.
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